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Abstract. This paper presents photon-like spatially finite soliton solutions of screw type to the vacuum
field equations of Extended Electrodynamics (EED) in relativistic formulation. Also, a new description of
the spin momentum inside EED, based on the notion for energy-momentum exchange between F and ∗F ,
is introduced and used to compute the integral spin momentum of a screw soliton. The Planck’s formula
E = hν in the form of ET = h arises as a measure of the integral spin momentum.

PACS. 11.10.Lm Nonlinear or nonlocal theories and models – 11.27.+d Extended classical solutions;
cosmic strings, domain walls, texture

1 Introduction

Natural objects may be classified according to various
principles. The classical point-like objects (called usually
particles) are allowed to interact continuously with each
other just through exchanging (through some mediator
usually called field) universal conserved quantities: energy,
momentum, angular momentum, so that, the set of ob-
jects “before” interaction is the same as the set of objects
“after” interaction, no objects have disappeared and no
new objects have appeared, only the conserved quantities
have been redistributed. This is in accordance with the
assumption of point-likeness, i.e. particles are assumed
to have no internal structure, so they are undestroyable.
Clearly, there are no such objects in Nature, nevertheless,
under suitable conditions the point-likeness hypothesis has
proved to be useful. And these suitable conditions deter-
mine the frame where classical mechanics works well.

A basic feature of microobjects (called usually elemen-
tary particles: photons, electrons, etc.) is that a set of mi-
croobjects may transform into another set of microobjects
under definite conditions, for example, the well known an-
nihilation process: (e+, e−) → 2γ. These transformations
obey also the energy-momentum and angular+spin mo-
mentum conservation, but some features may disappear
(e.g. the electric charge) and new features (e.g. motion
with the highest velocity) may appear. Hence, microob-
jects allow to be destroyed, so they have structure and, con-
sequently, the point-like approximation has to be recon-
sidered. Quantum Electrodynamics has shown how this
reconsideration may be done.

Although the great successes of Quantum
Electrodynamics, one would like to have a theory,
where microobjects are not considered as point-like ob-
jects, and modern (super)string theory is a step towards
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building such a theory. Earlier views and attempts in this
direction are also available [1].

On the other hand, it seems reasonably to exam-
ine different theoretical approaches to describe finite (or
extended) 3d-objects with structure as time-dependent
solutions to partial differential equations. If we find a
self-consistent classical theory giving 3d-soliton solutions
which have integral properties recalling the properties of
the known micriobjects, in our view, such a theory worths
being studied carefully.

This paper aims to present a class of solutions to
a particular extension of Maxwell equations which we
called Extended Electrodynamics (EED) [2]. These solu-
tions have a 3d screw nature, we call them screw solitons,
and they are interesting in, that they show a photon-like
behavior and properties. Determining the degree of ad-
equacy of these solutions to the real photons, needs, of
course, time and additional serious study. We think that
having at hand such classical soliton solutions with prop-
erties close to those of photons may only help in our ef-
forts to understand more deeply the quantum nature of
microobjects.

We proceed now to recall the main features/properties
of solitons and photons.

2 Solitons and photons

The concept of soliton appears in physics as a nonlinear
elaboration – physical and mathematical – of the general
notion for excitation in a medium. It includes the following
features:
I. Physical

1. The medium is homogeneous, isotropic and has def-
inite properties of elasticity.

2. The excitation does not destroy the medium.
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3. The excitation is finite:
– at every moment it occupies comparatively small vol-

ume of the medium;
– it carries finite quantities of energy-momentum and

angular momentum, and of any other physical quantity;
– it may have translational-rotational (may time-perio-

dical) dynamical structure, i.e. besides its straightline pro-
pagation as a whole it may have internal rotational degrees
of freedom.

4. The excitation is time-stable, i.e. at lack of external
perturbations its dynamical evolution does not lead to a
self-ruin. In particular, the spatial shape of the excitation
does not (significantly) change during its propagation.

The above 4 features outline the physical notion of a
solitary wave. A solitary wave becomes a soliton if it has
in addition the following property of stability:

5. The excitation survives when collides with another
excitation of the same nature.

II. Mathematical
1. The excitation defining functions Φa are components

of one mathematical object (usually a section of a vec-
tor/tensor bundle) and depend on n spatial and 1 time co-
ordinates. This feature introduces some notion of integrity:
one excitation – one mathematical object, although having
many algebraically independent but differentially interre-
lated (through the equations) components Φa.

2. The components Φa satisfy some system of nonlin-
ear partial differential equations (except the case of (1+1)
linear wave equation), and represent some “running wave”
dynamics as a whole, together with available internal dy-
namics.

3. There are (infinite) many conservation laws.
4. The components Φa are localized (or finite) func-

tions with respect to the spatial coordinates, and the con-
servative quantities are finite.

5. The multisoliton solutions, describing elastic inter-
action (collision), tend to many single soliton solutions
at t→ ∞.

The above physical/mathematical features are not al-
ways strictly accounted for in the literature. For example,
the word soliton is frequently used for a solitary wave ex-
citation. Another example is the usage of the word soliton
just when the energy density, has the above soliton prop-
erties [3]. Also, one usually meets this soliton terminology
for spatially localized, i.e. going to zero at spatial infinity,
but not spatially finite Φa, i.e. when the spatial support
of Φa is a compact set. In fact, all soliton solutions of the
well known KdV, SG, NLS equations are localized and not
finite.

Further in this paper we shall present 1-soliton screw
solutions of the vacuum EED equations, so we shall use
the word soliton for solitary wave. The screw soliton so-
lutions we are going to present are of photon-like charac-
ter, i.e. the velocity of their translational component of
propagation is equal to the velocity of light c, and besides
of the energy-momentum, they carry also spin momentum
accounting for the available rotational component of prop-

agation. We consider appropriate at this moment to recall
some of the well known properties of photons.

1. Photons have zero proper mass and electric charge.
The (straightline) translational component of their propa-
gation velocity is constant and equal to the experimentally
established velocity of light in vacuum.

2. Photons are time-stable objects. Every interaction
with other objects kills them.

3. The existence of photons is generically connected
with some time-periodical process of period T and fre-
quency ν = T−1, so that the Planck relation E = hν, or
ET = h, where h is the Planck constant, holds.

4. Every single photon carries momentum p with |p| =
hν/c and spin momentum equal to the Planck constant h.

5. Photons are polarized objects. The polarization of
every single photon should relate its spatial structure with
the translational and rotational directions of propagation.

6. Photons do not interact with each other. i.e. they
pass through each other without changes, and this allows
to consider just free photons.

We recall now the basics of EED, in the frame of which
the screw photon-like 3d-solitons will be constructed.

3 Basics of extended electrodynamics
in vacuum

We are going to consider just the vacuum case of EED in
relativistic formulation. The signature of the space time
pseudometric η is (−,−,−,+), the canonical coordinates
will be denoted by (x1, x2, x3, x4) = (x, y, z, ξ = ct), so the
volume 4-form ωo is given by ωo = dx∧ dy ∧ dz ∧ dξ. The
Hodge ∗-operator is defined by α∧ β = η(∗α, β)ωo, where
α and β are p and 4 − p forms respectively. In terms of
εµνσρ we have (∗F )µν = − 1

2εµνσρF
σρ. We have also the

exterior derivative d and the coderivative δ = ∗d∗. The
physical interpretation of Fµν are: Fi4 = −F4i, i = 1, 2, 3,
are the components E1,E2,E3 of the electric vector E,
and (F23,−F13, F12) are the components B1,B2,B3 of the
magnetic vector B, respectively.

In terms of δ the vacuum Maxwell equations are
given by

δ ∗ F = 0, δF = 0. (1)

In EED the above equations (1) are extended to

δ ∗ F ∧ F = 0, δF ∧ ∗F = 0,

δF ∧ F − δ ∗ F ∧ ∗F = 0. (2)

In components, equations (2) are respectively:

(∗F )µν(δ ∗ F )ν = 0, Fµν(δF )ν = 0,

(∗F )µν(δF )ν + Fµν(δ ∗ F )ν = 0. (3)
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The physical sense of equations (3) is, obviously, lo-
cal energy-momentum redistribution during the evolution:
the first two equations say that F and ∗F keep locally their
energy-momentum, and the third equation says (in corre-
spondence with the first two), that the energy-momentum
transferred from F to ∗F is always equal locally to the
energy-momentum transferred from ∗F to F , hence, any
of the two expressions Fµν(δ ∗ F )ν and (∗F )µν(δF )ν may
be considered as a measure of the rotational component
of the energy-momentum redistribution between F and
∗F during propagation (recall that the spatial part of δF
contains rotB and the spatial part of δ ∗F contains rotE).

Obviously, equations (3) have more solutions than equ-
ations (1). In particular, those solutions of (3) which sat-
isfy the relations

δF �= 0, δ ∗ F �= 0 (4)

are called nonlinear. Further we are going to consider
only the nonlinear solutions of (3) and the correspond-
ing “electric” and “magnetic” 3-vectors will be denoted
respectively by E and B.

Some of the basic results in our previous studies of
the nonlinear solutions of equations (3) could be sum-
marized in the following way: For every nonlinear so-
lution (F, ∗F ) of (3) there exists a canonical system of
coordinates (x, y, z, ξ) in which the solution is fully rep-
resented by two functions Φ(x, y, ξ + εz), ε = ±1, and
ϕ(x, y, z, ξ), |ϕ| ≤ 1, as follows:

F = εΦϕdx ∧ dz + Φϕdx ∧ dξ

+ εΦ
√

1 − ϕ2dy ∧ dz + Φ
√

1 − ϕ2dy ∧ dξ,

∗F = −Φ
√

1 − ϕ2dx ∧ dz − εΦ
√

1 − ϕ2dx ∧ dξ
+ Φϕdy ∧ dz + εΦϕdy ∧ dξ.

We call Φ the amplitude function and ϕ the phase function
of the solution. The condition |ϕ| ≤ 1 allows to set ϕ =
cosψ, and further we are going to work with ψ, and ψ will
be called phase. As we showed [2], the two functions Φ and
ϕ may be introduced in a coordinate free manner, so they
have well defined invariant sense. Every nonlinear solution
satisfies the following important relations:

(δF )2 < 0, (δ∗F )2 < 0, |δF | = |δ∗F |, (δF )σ(δ∗F )σ = 0,

FµνF
µν = Fµν(∗F )µν = 0.

We recall also the scale factor L, defined by the relation
L = |Φ|/|δF |. A simple calculation shows that it depends
only on the derivatives of ψ in these coordinates and is
given by

L =
1

|ψξ − εψz| · (5)

4 Screw soliton solutions in extended
electrodynamics

Note that EED considers the field as having two compo-
nents: F and ∗F . As we mentioned earlier, the third equa-
tion of (3) describes how much energy-momentum is redis-
tributed locally with time between the two components F

and ∗F of the field: Fµν(δ∗F )νdxµ gives the transfer from
F to ∗F , and (∗F )µνδF

νdxµ gives the transfer from ∗F
to F , thus, if there is such an energy-momentum exchange
equations (3) require permanent and equal mutual energy-
momentum transfers between F and ∗F . Since F and ∗F
are always orthogonal to each other [Fµν(∗F )µν = 0] and
these two mutual transfers depend on the derivatives of
the field functions through δF and δ∗F (i.e. through rotB
and rotE), we may interpret this property of the solu-
tion as a description of an internal rotation-like compo-
nent of the general dynamics of the field. Hence, any of
the two expressions Fµν(δ ∗F )νdxµ or (∗F )µνδF

νxµ may
serve as a natural measure of this rotational component of
the energy-momentum redistribution during the propaga-
tion. Therefore, after some appropriate normalization, we
may interpret any of the two 3-forms (∗F ) ∧ (δ ∗ F ) and
F ∧ δF as local spin-momentum of the solution. Making
use of the above expressions for F and ∗F we compute
F ∧ δF = (∗F ) ∧ (δ ∗ F ):

F ∧ δF = −εΦ2(ψξ − εψz)dx ∧ dy ∧ dz

− Φ2(ψξ − εψz)dx ∧ dy ∧ dξ.

The function ψ is determined by the equation

d(F ∧ δF ) = 0, (6)

which guarantees conservation of the spin-momentum. So,
from (6) we obtain

ψξξ + ψzz − 2εψzξ = 0.

This equation has the following solutions:
1◦. Running wave solutions ψ1 = ψ(x, y, ξ + εz),
2◦. ψ2 = ξg(x, y, ξ + εz) + b(x, y),
3◦. ψ3 = zg(x, y, ξ + εz) + b(x, y),
4◦. Any linear combination of the above solutions with

coefficients which are allowed to depend on (x, y). The
functions g(x, y, ξ + εz) and b(x, y) are arbitrary in the
above expressions.

The running wave solutions ψ1, defined by 1◦ lead
to F ∧ δF = 0 and to |δF | = 0, and by this reason
they have to be ignored. The solutions ψ2 and ψ3, de-
fined respectively by 2◦ and 3◦, give the same scale factor
L = 1/|g|. Since at all spatial points where the field is dif-
ferent from zero we have ξ + εz = const., we may choose
|g(x, y, ξ+ εz)| = 1/l(x, y) > 0, so we obtain the following
nonrunning wave solutions of (6):

ψ2 =
κξ

l(x, y)
+ b(x, y); ψ3 =

κz

l(x, y)
+ b(x, y), (7)

where κ = ±1 accounts for the two different polarizations.
Clearly, the physical dimension of l(x, y) is length, b(x, y)
is dimensionless and the scale factor is L = l(x, y).

Further we consider the case 3◦ with κ = 1, ε = −1:
κ = 1 means clock-wise polarization when looking along
the (+z)-axis; ε = −1 means propagation along z-axis
from −∞ to +∞. Choosing Φ appropriately, and assuming
l(x, y) = lo = const.; b(x, y) = bo = const., we obtain
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for the electric E and magnetic B vectors the following
expressions:

E =
{
C

θ(x, y; ro)θ(ξ − z; lo)
cosh [(x− a)2 + (y − a)2]

cos
( z
lo

+ bo

)
;

C
θ(x, y; ro)θ(ξ − z; lo)

cosh [(x− a)2 + (y − a)2]
sin

( z
lo

+ bo

)
; 0

}
(8)

B =
{
−C θ(x, y; ro)θ(ξ − z; lo)

cosh [(x− a)2 + (y − a)2]
sin

( z
lo

+ bo

)
;

C
θ(x, y; ro)θ(ξ − z; lo)

cosh [(x− a)2 + (y − a)2]
cos

( z
lo

+ bo

)
; 0

}
· (9)

The above expressions mean that at every moment the so-
lution occupies one-step piece of a very thin screw cylinder.
This screw cylinder winds around the z-axis, it’s points
are distant from the z-axis approximately at the same
distance of lo, so that lo ∼= a

√
2, and its internal radius is

equal to ro 	 lo. The height of the cylinder is 2πlo, and
the constant C gives the right physical dimension of the
field components. We can say that this screw cylinder is
made of non-intersecting screw lines. The time evolution
of every point inside this screw cylinder follows its own
screw line and never crosses any screw line of any other
point where the field is different from zero. The two lo-
calizing functions θ(x, y; ro) and θ(ξ−z) localize the solu-
tion at every moment ξ inside the corresponding one-step
screw cylinder piece Ωξ(2πlo, a, ro), (for a more detailed
consideration see hep-th/0104088).

The inverse of the scale factor L > 0, which was as-
sumed to be approximately a constant lo in this solution,
characterizes how “far” is a given nonlinear solution from
Maxwell solutions. In fact, when δF and δ ∗F go to zero,
then L→ ∞ and L−1 → 0.

5 The spin-momentum

According to our assumption the spin density of the so-
lution is given by any of the correspondingly normalized
two 3-forms F ∧ δF , or (∗F ) ∧ (δ ∗ F ). In order to have
the appropriate physical dimension we consider now the
3-form β defined by

β = 2π
L2

c
F ∧ δF = 2π

L2

c

[−εΦ2(ψξ − εψz)dx ∧ dy ∧ dz

− Φ2(ψξ − εψz)dx ∧ dy ∧ dξ
]
.

Its physical dimension is “energy-density × time”. Since
L = L(x, y) at most, we see that β is closed: dβ = 0 and
we may use the Stokes’ theorem. We shall make use of the
solutions 3◦, so ψξ = 0, ψz = κ/l(x, y), L = |ψξ − εψz|−1.

Assuming L = lo = const., we reduce β to the 3-space
spand by (x, y, z) (we use the same notation for the
reduced β)

β =
2πlo
c
κΦ2dx ∧ dy ∧ dz,

integrate it over the 3-space and obtain
∫
R3

β = κE
2πlo
c

= κET = ±ET, (10)

where E is the integral energy of the solution, T = 2πlo/c
is the intrinsically defined time-period, and κ = ±1 ac-
counts for the two polarizations. According to our inter-
pretation this is the integral intrinsic angular momen-
tum, or spin-momentum, of the solution, for one period
T . This intrinsically defined action ET of the solution is
to be identified with the Planck’s constant h, h = ET , or
E = hν, if we are going to interpret the solution as an
extended model of a single photon.

6 Conclusion

We presented 3d photon-like soliton solutions with screw-
like periodic dynamical structure in the frame of EED.
This structure manifests its dynamical nature through the
consistent rotational-translational propagation in space.
The finite nature reveals itself through the finite 3-volumes
of definite shape they occupy at every moment of their
existence, and through the finite values of the conserved
quantities they carry. The available continuous and mu-
tual energy-momentum exchange between the two com-
ponents F and ∗F of the solution generates rotational
component of its propagation being generically connected
to its screw (helical) spatial structure.
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